Reg. No.

G. VENKATASWAMY NAIDU COLLEGE (AUTONOMOUS), KOVILPATTI - 628 502.

UG DEGREE END SEMESTER EXAMINATIONS - NOVEMBER 2024.

(For those admitted in June 2023 and later)

PROGRAMME AND BRANCH: B.Sc., MATHEMATICS

SEM	CATEGORY	COMPONENT	COURSE CODE	COURSE TITLE
III	PART - III	CORE-5	U23MA305	VECTOR CALCULUS AND ITS APPLICATIONS
Date & Session: 09.11.2024 / AN			Time:3	hours Maximum: 75 Marks

Course Outcome	Bloom's K-level	Q. No.	<u>SECTION – A (</u> 10 X 1 = 10 Marks) Answer <u>ALL</u> Questions.		
CO1	K1	1.	If $\overline{r} = x\overline{i} + y\overline{j} + z\overline{k}$, then $\nabla . \overline{r} = $		
CO1	K2	2.	The vector field \vec{F} is solenoidal if a) $\nabla . \vec{F} = 0$ b) $\nabla \times \vec{F} = 0$ c) $\nabla^2 \vec{F} = 0$ d) $\nabla . \vec{F} = \vec{0}$		
CO2	K1	3.	a)b)c)a)c)a)a)1b)b)c) ∞ c)		
CO2	K2	4.	Curl curl A = a) $\nabla \times (\nabla \times A)$ b) $\Delta \times (\Delta \times A)$ c) $\nabla . (\nabla . A)$ d) $\Delta . (\Delta . A)$		
CO3	K1	5.	A field \overline{F} is said to be conservative if a) $\nabla .\overline{F} = 0$ b) $\nabla \times \overline{F} = 0$ c) $\nabla^2 \overline{F} = 0$ d) $\nabla .\overline{F} = \overline{0}$		
CO3	K2	6.	The value of $\int dl$ along a circle of radius 2 unit is		
CO4	K1	7.	a) 0 b) c)		
CO4	K2	8.	The parabolic arc $y = \sqrt{x}, 1 \le x \le 2$ is revolved around the x – axis. The volume of the solid of revolution is a) $\frac{\pi}{2}$ b) $\frac{\pi}{4}$ c) $\frac{3\pi}{2}$ d) $\frac{3\pi}{4}$		
CO5	K1	9.	Which of the following is obtained by evaluating $\iint_{S} \bar{r}.\bar{n} ds$ where S is a closed surface and V is the Volume using Gauss Divergence Theorem? a) $3V$ b) $2V$ c) V d) $5V$		
CO5	K2	10.	 Which of the following is related with Stoke's Theorem? a) A surface integral and a volume integral b) A Line integral, a surface inegral and a volume integral c) A Line integral and a volume integral d) A Line integral and a surface integral 		
Course Outcome	Bloom's K-level	Q. No.	<u>SECTION – B (</u> 5 X 5 = 25 Marks) Answer <u>ALL</u> Questions choosing either (a) or (b)		
CO1	КЗ	11a.	If $\overline{A} = u\overline{i} + u^2\overline{j} + u^3\overline{k}$, $\overline{B} = u^3\overline{i} + u^2\overline{j} + u\overline{k}$ find (i) $\frac{d(\overline{A} \times \overline{B})}{du}$ (ii) $\frac{d(\overline{A} \times \overline{B})}{du}$		
CO1	K3	11b.	If $\bar{r} = x\bar{i} + y\bar{j} + z\bar{k}$ is unit vector, then show that $x\frac{dx}{dt} + y\frac{dy}{dt} + z\frac{dz}{dt} = 0$		

CO2	КЗ	12a.	Find the directional derivative of $\emptyset = x + xy^2 + yz^3$ at (0,1,1) in the direction of the vector $2\bar{i} + 2\bar{j} - \bar{k}$
			(OR)
CO2	K3	12b.	Show that $\overline{F} = yz \overline{i} + zx \overline{j} + xy \overline{k}$ is irrotational.
CO3	K4	13a.	Prove that $\nabla^2 r^n = n(n+1)r^{n-2}$ where n is a constant. (OR)
CO3	K4	13b.	In the vector field $\vec{F} = z(x\bar{i} + y\bar{j} + z\bar{k})$, evaluate $\int_{C} \vec{F} \cdot \vec{r}$ along straight line joining (0,0,0), (1,1,1)
CO4	K4	14a.	Evaluate $\iint \overline{A} \cdot \overline{n} ds$ if $\overline{A} = 18z\overline{i} - 12\overline{j} + 3y\overline{k}$ and S is the surface $2x + 3y + 6z = 12$ in the first octant.
			(OR)
CO4	K4	14b.	Evaluate $\iiint_V \nabla \cdot \vec{F} dV$ if $\vec{F} = x^2 \vec{\imath} + y^2 \vec{j} + z^2 \vec{k}$ and if V is the volume of the region
			enclosed by the curve $0 \le x, y, z \le 1$
CO5	K5	15a.	Show that the volume V of the region enclosed by the surface S is $\frac{1}{2} \iint_{S} \bar{r} dS$
			(OR)
CO5	K5	15b.	Using Green's theorem, show that $\int_{c} (3x + 4y)dx + (2x - 3y)dy = -8\pi$, Where C is
			the circle $x^2 + y^2 = 4$

Course Outcome	Bloom's K-level	Q. No.	<u>SECTION – C (</u> 5 X 8 = 40 Marks) Answer <u>ALL Questions choosing either (a) or (b)</u>
CO1	КЗ	16a.	If a, b, w are vector functions of a scalar variable u and if $\frac{da}{du} = w \times a, \frac{db}{du} = w \times b,$ then show that $\frac{d}{du}(a \times b) = w \times (a \times b)$
CO1	КЗ	16b.	Find the directional derivative of $x + xy^2 + yz^3$ at the point (0,1,1) in the direction whose direction cosines are 2/3,2/3,-1/3.
CO2	K4	17a.	If $\overline{F} = x^2 y \overline{i} + y^2 z \overline{j} + z^2 x \overline{k}$, then find curl curl \overline{F}
CO2	K4	17b.	(OR) Show that the vector $\overline{A} = x^2 z^2 \overline{i} + xy z^2 \overline{j} - x z^3 \overline{k}$ is solenoidal.
CO3	K4	18a.	Show that $\nabla^2 \log r = \frac{1}{r^2}$.
CO3	K4	18b.	(OR) If $\bar{F} = 3xy\bar{\iota} - y^3\bar{j}$, compute $\int_C \bar{F}.\bar{r}$ along $y = 2x^2$ from (0,0) to (1,2).
CO4	К5	19a.	Evaluate the integral $\int_{C} x dx + y dy + z dz$ where C is the circle $x^{2} + y^{2} + z^{2} = a^{2}, z = 0$ (OR)
CO4	К5	19b.	$\iiint_{\mathbf{V}} \nabla.\overline{A} d\overline{V}$ Evaluate $\bigvee_{\mathbf{V}} \text{ if } \overline{A} = 2x^2y\overline{i} - y^2\overline{j} + 4xz^2\overline{k}$ and V is the region in the first octant bounded by the cylinder $y^2 + z^2 = 9$ and the plane $x = 2$
CO5	K5	20a.	State and prove Stoke's theorem. (OR)
CO5	К5	20b.	Using Green's theorem, Evaluate $\int_{C} x^{2}(1+y) dx + (y^{3}+x^{3}) dy$ where <i>C</i> is the square formed by the lines $y = \pm 1, x = \pm 1$